Influences of the thalamus on the survival of subplate and cortical plate cells in cultured embryonic mouse brain.

نویسندگان

  • D J Price
  • R B Lotto
چکیده

The afferent and efferent connections of the cerebral neocortex develop simultaneously toward the end of embryogenesis. At this stage, the neocortex comprises two main cell-dense layers: the thicker and more superficial cortical plate (future layers 2-6) and the thinner underlying subplate. Many early thalamocortical projections temporarily innervate the subplate before leaving it to locate their ultimate targets in the overlying cortical plate. The subplate then disappears. In this study, we performed in vitro experiments on late embryonic murine brain to test whether the thalamus can influence the survival of cortical plate and subplate cells at this stage. In isolated organotypic cortical explants from embryonic day 19 mice, most of the cells that had formed the subplate died. Coculture with a thalamic explant prevented this loss; coculture with additional cortical or cerebellar explants did not. By contrast, many cells in or destined for the cortical plate survived even in isolated cortical explants; coculture with a thalamic explant did not alter the numbers of these cells that survived. Our results suggest that the thalamus provides trophic support for subplate cells but not for late embryonic cortical plate cells. In vivo, a loss of thalamic-derived trophic support for the subplate late in embryogenesis, consequent on the movement of thalamocortical axons into the cortical plate, may contribute to subplate death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA

Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...

متن کامل

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

Evaluation of effect of chick embryonic notochord on neural induction of mouse embryonic stem cells

Introduction: The aim of this study was evaluate the ability of notochord to induce neural induction and/or differentiation of mouse embryonic stem cell to neuron and motor neuron, respectively. Methods: In order to produce embryoid bodies, ES cells line Royan B1 were grown in suspension in the absence of LIF for 4 days. EBs were divided into 4 groups. EBs in group 1 & 2 were further cultur...

متن کامل

The Effect of chick Embryonic Somites on Neural Rosette Formation in Mouse Embryonic Stem Cells

purpose: The aim of the present study is to understand if EBs can generate neural rosette upon co-culture with chick embryo somites. Materials and Methods: The mouse ES cells, line Royan Bl, were cultured in hanging drops to induce embryoid bodies (EBs) formation. Somites were isolated from the chick embryos and then embedded in alginate solution. Finally, alginate beads containing somites were...

متن کامل

Growth and targeting of subplate axons and establishment of major cortical pathways.

In the developing mammalian neocortex, the first postmitotic neurons form the "preplate" superficial to the neuroepithelium. The preplate is later split into a marginal zone (layer 1) and subplate by cortical plate neurons that form layers 2-6. Cortical efferent axons from layers 5 and 6 and cortical afferent axons from thalamus pass between cortex and subcortical structures through the interna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 10  شماره 

صفحات  -

تاریخ انتشار 1996